Markov Infinitely-Divisible Stationary Time-Reversible Integer-Valued Processes
نویسندگان
چکیده
We characterize all stationary time reversible Markov processes whose finite dimensional marginal distributions (of all orders) are infinitely divisible– MISTI processes, for short. Aside from two degenerate cases (iid and constant), in both discrete and continuous time every such process with full support is a branching process with Poisson or Negative Binomial marginal univariate distributions and a specific bivariate distribution at pairs of times. As a corollary, we prove that all nondegenerate stationary integer valued processes constructed by the Markov thinning process fail to have infinitely divisible multivariate marginal distributions, except for the Poisson.
منابع مشابه
Stationary Infinitely-Divisible Markov Processes with Non-negative Integer Values
We characterize all stationary time-reversible Markov processes whose finite-dimensional marginal distributions (of all orders) are infinitely divisible. Aside from two trivial cases (iid and constant), every such process with full support in both discrete and continuous time is a branching process with Poisson or Negative Binomial marginal distributions and a specific bivariate distribution at...
متن کاملInteger-valued trawl processes: A class of stationary infinitely divisible processes
This paper introduces a new continuous-time framework for modelling serially correlated count and integer-valued data. The key component in our new model is the class of integer-valued trawl (IVT) processes, which are serially correlated, stationary, infinitely divisible processes. We analyse the probabilistic properties of such processes in detail and, in addition, study volatility modulation ...
متن کاملDiscrete-valued ARMA processes
This paper presents a unified framework of stationary ARMA processes for discrete-valued time series based on Pegram’s [Pegram, G.G.S., 1980. An autoregressive model for multilag markov chains. J. Appl. Probab. 17, 350–362] mixing operator. Such a stochastic operator appears to be more flexible than the currently popular thinning operator to construct Box and Jenkins’ type stationary ARMAproces...
متن کاملBrief tutorial of Lévy processes
Some fundamental properties related to Lévy processes are discussed. Topics include infinitely divisible distributions, Lévy-Khintchine formula, Poisson random measures, Lévy-Itô decomposition, series representations, and density transformations. 1 Basic properties • In short, a Lévy process X = {Xt}t≥1 is a R-valued process with independent and stationary increments whose paths are right-conti...
متن کاملErgodic Properties of Max–Infinitely Divisible Processes
We prove that a stationary max–infinitely divisible process is mixing (ergodic) iff its dependence function converges to 0 (is Cesaro summable to 0). These criteria are applied to some classes of max–infinitely divisible processes.
متن کامل